metal-organic compounds

Mo $K\alpha$ radiation $\mu = 1.58 \text{ mm}^{-1}$

 $0.57 \times 0.51 \times 0.39$ mm

17037 measured reflections 6130 independent reflections

3810 reflections with $I > 2\sigma(I)$

T = 298 (2) K

 $R_{\rm int}=0.064$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis{2,2'-[ethane-1,2-divlbis(iminomethylene)]diphenolato- $\kappa^2 O, N, N', O'$ }cerium(IV) chloroform solvate

Shu-Ping Yang,^a* Li-Jun Han,^b Da-Qi Wang^c and Bo Wang^a

^aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, ^bDepartment of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, and College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: yangshuping@hhit.edu.cn

Received 9 October 2007; accepted 16 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; R factor = 0.046; wR factor = 0.128; data-to-parameter ratio = 15.1.

In the title compound, $[Ce(C_{16}H_{18}N_2O_2)_2]$ ·CHCl₃, the Ce^{IV} atom has an eight-coordinate geometry involving two tetradentate N,N'-(2-oxidobenzyl)ethane-1,2-diamine ligands. The asymmetric unit contains one molecule of the title complex and one chloroform molecule, linked by C-H···O and N-H...Cl hydrogen bonds. These neighbouring molecules are connected by two $C-H\cdots\pi$ interactions, and by $N-H\cdots$ Cl and $C-H \cdot \cdot \cdot Cl$ interactions, resulting in a three-dimensional network.

Related literature

For related literature, see: Branum et al. (2001); Franklin (2001); Komiyama et al. (1999); Liu et al. (2007); Takasaki & Chin (1994); Williams et al. (1999).

Experimental

Crystal data [Ce(C₁₆H₁₈N₂O₂)₂]·CHCl₃ $M_r = 800.14$

Monoclinic, $P2_1/n$ a = 12.493 (1) Å

b = 14.199 (2) Å	
c = 20.253 (2) Å	
$\beta = 104.263 \ (2)^{\circ}$	
V = 3481.8 (7) Å ³	
Z = 4	

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	406 parameters
$wR(F^2) = 0.129$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 1.50 \text{ e} \text{ Å}^{-3}$
6130 reflections	$\Delta \rho_{\rm min} = -0.77 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ce1-O1	2.193 (4)	Ce1-N1	2.603 (4)
Ce1-O2	2.218 (4)	Ce1-N2	2.628 (4)
Ce1-O3	2.239 (4)	Ce1-N4	2.621 (4)
Ce1-O4	2.188 (4)	Ce1-N3	2.626 (5)
O4-Ce1-O1	95.7 (2)	N1-Ce1-N4	132.6 (2)
O4-Ce1-O2	90.7 (2)	N1-Ce1-N3	133.7 (1)
O1-Ce1-O2	149.1 (1)	N4-Ce1-N3	67.1 (1)
O4-Ce1-O3	147.2 (1)	N1-Ce1-N2	66.5 (1)
O1-Ce1-O3	95.1 (2)	N4-Ce1-N2	135.3 (1)
O2-Ce1-O3	95.7 (2)	N3-Ce1-N2	135.2 (2)

Table 2

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the ring C9–C14 and Cg2 is the centroid of the ring C25– C30.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···Cl1	0.91	2.73	3.604 (5)	162
C33-H33···O3	0.98	2.51	3.437 (7)	157
$N2-H2\cdots Cl2^{i}$	0.91	2.94	3.762 (5)	151
C4-H4A···Cl3 ⁱⁱ	0.93	2.79	3.646 (7)	153
$C29-H29\cdots Cg1^{iii}$	0.93	2.85	3.626 (7)	142
$C31 - H31B \cdots Cg2^{iv}$	0.97	2.79	3.712 (6)	158
Symmetry codes: (i)	$-x + \frac{3}{2}, y -$	$\frac{1}{2}, -z + \frac{1}{2};$ (i	ii) $-x + \frac{3}{2}, y + \frac{1}{2}$	$-z + \frac{1}{2};$ (iii)

 $x - \frac{3}{2}, -y - \frac{1}{2}, z - \frac{3}{2}$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors acknowledge the financial support of the Huaihai Institute of Technology Science Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2424).

References

- Branum, M. E., Tipton, A. K., Zhu, S. & Que, L. Jr (2001). J. Am. Chem. Soc. 123, 1898–1904.
- Franklin, S. J. (2001). Curr. Opin. Chem. Biol. 5, 201–208.
- Komiyama, M., Takeda, N. & Shigekawa, H. (1999). Chem. Commun. pp. 1443–1451.
- Liu, Y.-F., Xia, H.-T., Wang, D.-Q. & Yang, S.-P. (2007). Acta Cryst. E63, m484–m486.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Takasaki, B. K. & Chin, J. (1994). J. Am. Chem. Soc. 116, 1121-1122.
- Williams, N. H., Takasaki, B., Wall, M. & Chin, J. (1999). Acc. Chem. Res. 32, 485–493.

Acta Cryst. (2007). E63, m2777-m2778 [doi:10.1107/S160053680705101X]

Bis{2,2'-[ethane-1,2-diylbis(iminomethylene)]diphenolato- $\kappa^2 O, N, N', O'$ } cerium(IV) chloroform solvate

S.-P. Yang, L.-J. Han, D.-Q. Wang and B. Wang

Comment

Some Ce^{IV} complexs has been shown to hydrolyze DNA effectively at a reasonable rate (Franklin, 2001; Williams *et al.*,1999; Takasaki & Chin, 1994; Branum *et al.*, 2001; Komiyama *et al.*, 1999). We have reported recently the crystyl structure of a Ce^{IV} complex (Liu *et al.*, 2007). As part of our study of the Ce^{IV} complexes with the diamine derives, We report here the crystal structure of a new Ce^{IV} complex, bis[N,N-bis(2-oxidobenzyl)ethane-1,2-diamine- $\kappa^2 N,N',O,O'$] cerium(IV) chloroform disolvate, (I).

Compound (I) crystallizes in the space group $P2_1/n$, and the asymmetric unit contains a title complex and one chloroform molecule, which are linked by one N—H···Cl and one C—H···O hydrogen bonds into a dimeric structure (Table 2 and Fig. 1). The Ce^{IV} atom is coordinated by four O atoms and four N atoms from two tetradentate ligand, *N*,*N*⁻(2-oxidobenzyl)ethane-1,2-diamine, forming a complex eight-coordinated stereochemistry geometry (Fig. 1). Two least-squares planes are defined by the atoms Ce1/O1/O2/N1/N2 and Ce1/O3/O4/N3/N4, and which are approximately planar, the maximum deviation are -0.079 (3) Å for N2 and -0.118 (3) Å for N3, respectively. The dihedral angle between the two least-squares planes are 89.23 (9)°. The average Ce—O and Ce—N distance are 2.192 (4) Å and 2.620 (4) Å, these values are approximately similar to the Ce^{IV} complexes reported [2.199 (4)Å and 2.624 (4) Å; Liu *et al.*, 2007], and the bond angles ranges around Ce^{IV} atom are O—Ce—O of 95.1 (2)° – 149.1 (1)°, N—Ce—N of 66.5 (1)° – 135.3 (1)° (see in Table 1). The crystal structure of (I) is stabilized by two C—H··· π , one N—H···Cl and one C—H···Cl interactions (Table. 2).

Experimental

To a solution containing *N*,*N*-bis(2-hydroxybenzyl)ethane-1,2-diamine (1.52 g, 5 mmol) and ethanol (20 ml), a solution of cerium nitrate (1.09 g, 5 mmol) and methanol (10 ml) was added with stirring for 3 h at 333–343 K; the solid obtained was filtered off, washed successively with ethanol, and dried at room temperature. Dark red crystals of (I) suitable for X-ray structure analysis were obtained by slow evaporation of a chloroform–ethanol (1:2) solution containing the product over a period of one week.

Refinement

All H atoms were located in difference Fourier maps and then treated as riding atoms, with C—H distances of 0.93 Å (aryl), 0.97 Å (methylene), 0.98 Å (methine), N—H distances of 0.91 Å (amine), and with $U_{iso}(H) = 1.2U_{eq}(C,N)$ (aryl, methylene, methine, amine).

Figures

Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. For clarity, H atoms have been omitted.

Bis{2,2'-[ethane-1,2-diylbis(iminomethylene)]diphenolato- $\kappa^4 O, N, N', O'$ }cerium(IV) chloroform solvate

Crystal data	
$[Ce(C_{16}H_{18}N_2O_2)_2] \cdot CHCl_3$	$F_{000} = 1616$
$M_r = 800.14$	$D_{\rm x} = 1.526 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 5182 reflections
a = 12.493(1) Å	$\theta = 2.3 - 25.4^{\circ}$
<i>b</i> = 14.199 (2) Å	$\mu = 1.58 \text{ mm}^{-1}$
c = 20.253 (2) Å	T = 298 (2) K
$\beta = 104.263 \ (2)^{\circ}$	Block, dark red
V = 3481.8 (7) Å ³	$0.57 \times 0.51 \times 0.39 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	6130 independent reflections
Radiation source: fine-focus sealed tube	3810 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.064$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 14$
$T_{\min} = 0.466, T_{\max} = 0.578$	$k = -16 \rightarrow 16$
17037 measured reflections	$l = -18 \rightarrow 24$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.046$
$wR(F^2) = 0.129$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0568P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

S = 1.06	$(\Delta/\sigma)_{max} < 0.001$
6130 reflections	$\Delta \rho_{max} = 1.50 \text{ e} \text{ Å}^{-3}$
406 parameters	$\Delta \rho_{min} = -0.77 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ce1	0.49514 (2)	0.39970 (2)	0.249313 (17)	0.03636 (13)
N1	0.6295 (3)	0.3382 (3)	0.1791 (2)	0.0420 (12)
H1	0.6932	0.3713	0.1942	0.050*
N2	0.5780 (3)	0.2327 (3)	0.2880 (2)	0.0403 (12)
H2	0.5283	0.1900	0.2649	0.048*
N3	0.4776 (3)	0.5594 (3)	0.3112 (3)	0.0437 (12)
Н3	0.4642	0.5447	0.3522	0.052*
N4	0.2960 (3)	0.4716 (3)	0.2136 (3)	0.0425 (12)
H4	0.2902	0.4974	0.1718	0.051*
01	0.4930 (3)	0.4995 (3)	0.1663 (2)	0.0506 (11)
O2	0.4336 (3)	0.3579 (3)	0.3389 (2)	0.0499 (11)
O3	0.6658 (3)	0.4371 (3)	0.3088 (2)	0.0518 (11)
O4	0.3878 (3)	0.2954 (3)	0.1861 (2)	0.0473 (11)
C1	0.5930 (5)	0.3567 (4)	0.1052 (3)	0.0505 (16)
H1A	0.5171	0.3361	0.0885	0.061*
H1B	0.6384	0.3206	0.0817	0.061*
C2	0.6012 (4)	0.4591 (4)	0.0896 (3)	0.0451 (16)
C3	0.5489 (4)	0.5277 (4)	0.1208 (3)	0.0434 (15)
C4	0.5554 (5)	0.6209 (5)	0.1045 (3)	0.0536 (17)
H4A	0.5212	0.6665	0.1251	0.064*
C5	0.6131 (6)	0.6465 (6)	0.0573 (4)	0.066 (2)
Н5	0.6156	0.7099	0.0461	0.079*
C6	0.6669 (6)	0.5825 (6)	0.0260 (4)	0.069 (2)
Н6	0.7063	0.6017	-0.0051	0.083*
C7	0.6602 (5)	0.4894 (5)	0.0424 (3)	0.0632 (19)
H7	0.6957	0.4447	0.0217	0.076*
C8	0.5915 (5)	0.2124 (5)	0.3613 (3)	0.0563 (18)

H8A	0.6323	0.2633	0.3881	0.068*
H8B	0.6340	0.1550	0.3731	0.068*
C9	0.4812 (5)	0.2014 (4)	0.3783 (3)	0.0480 (15)
C10	0.4068 (5)	0.2771 (5)	0.3661 (3)	0.0470 (16)
C11	0.3065 (5)	0.2667 (5)	0.3833 (3)	0.0584 (18)
H11	0.2557	0.3158	0.3757	0.070*
C12	0.2818 (6)	0.1829 (6)	0.4119 (4)	0.070 (2)
H12	0.2142	0.1768	0.4230	0.084*
C13	0.3541 (7)	0.1099 (5)	0.4239 (4)	0.070 (2)
H13	0.3363	0.0542	0.4429	0.084*
C14	0.4530 (6)	0.1194 (5)	0.4076 (3)	0.0605 (18)
H14	0.5030	0.0697	0.4162	0.073*
C15	0.6596 (5)	0.2388 (4)	0.1918 (4)	0.0574 (19)
H15A	0.7254	0.2253	0.1762	0.069*
H15B	0.6003	0.1992	0.1665	0.069*
C16	0.6807 (5)	0.2169 (4)	0.2665 (3)	0.0523 (17)
H16A	0.7042	0.1520	0.2748	0.063*
H16B	0.7388	0.2574	0.2922	0.063*
C17	0.5802 (4)	0.6174 (4)	0.3255 (3)	0.0530 (17)
H17A	0.5643	0.6796	0.3405	0.064*
H17B	0.6046	0.6247	0.2839	0.064*
C18	0.6705 (5)	0.5735 (5)	0.3788 (3)	0.0476 (16)
C19	0.7083 (5)	0.4835 (5)	0.3672 (3)	0.0513 (17)
C20	0.7945 (5)	0.4448 (5)	0.4167 (4)	0.0617 (19)
H20	0.8211	0.3853	0.4100	0.074*
C21	0.8406 (6)	0.4933 (7)	0.4752 (4)	0.079 (3)
H21	0.8982	0.4659	0.5074	0.095*
C22	0.8046 (6)	0.5810 (6)	0.4876 (4)	0.080(2)
H22	0.8368	0.6133	0.5275	0.096*
C23	0.7188 (6)	0.6199 (6)	0.4389 (4)	0.072 (2)
H23	0.6927	0.6791	0.4467	0.086*
C24	0.2056 (4)	0.4024 (4)	0.2043 (3)	0.0451 (16)
H24A	0.1363	0.4363	0.1972	0.054*
H24B	0.2149	0.3663	0.2460	0.054*
C25	0.1980 (4)	0.3355 (4)	0.1465 (3)	0.0422 (15)
C26	0.2905 (4)	0.2832 (4)	0.1421 (3)	0.0403 (14)
C27	0.2786 (5)	0.2156 (4)	0.0908 (3)	0.0548 (17)
H27	0.3396	0.1804	0.0871	0.066*
C28	0.1775 (6)	0.2002 (5)	0.0456 (4)	0.067 (2)
H28	0.1712	0.1545	0.0119	0.081*
C29	0.0880 (6)	0 2507 (5)	0 0496 (4)	0.065 (2)
H29	0.0201	0.2398	0.0192	0.078*
C30	0.0981 (5)	0 3193 (5)	0.0998(3)	0.0573 (18)
H30	0.0367	0 3550	0.1021	0.069*
C31	0.3810 (5)	0.6138 (4)	0.2725 (4)	0.0549 (18)
H31A	0 3950	0.6367	0 2303	0.066*
H31B	0.3681	0.6676	0.2990	0.066*
C32	0.2805 (4)	0.5497 (4)	0.2573 (4)	0.0539 (18)
H32A	0 2686	0 5253	0.2996	0.065*

H32B	0.2156	0.5856	0.2348	0.065*
Cl1	0.88566 (18)	0.46389 (19)	0.19706 (14)	0.1116 (8)
C12	1.02770 (19)	0.52366 (17)	0.32317 (13)	0.1072 (8)
C13	0.9785 (2)	0.32984 (16)	0.29798 (18)	0.1389 (12)
C33	0.9284 (6)	0.4425 (5)	0.2845 (4)	0.069 (2)
H33	0.8645	0.4487	0.3042	0.083*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Ce1	0.03244 (18)	0.0353 (2)	0.0427 (2)	0.00136 (14)	0.01173 (14)	-0.00221 (19)
N1	0.040 (3)	0.042 (3)	0.045 (3)	0.004 (2)	0.012 (2)	0.001 (3)
N2	0.037 (2)	0.044 (3)	0.040 (3)	0.003 (2)	0.010 (2)	0.000 (3)
N3	0.039 (3)	0.047 (3)	0.047 (3)	0.000 (2)	0.016 (2)	0.003 (3)
N4	0.036 (2)	0.039 (3)	0.054 (3)	0.000 (2)	0.014 (2)	0.005 (3)
01	0.055 (2)	0.051 (3)	0.052 (3)	0.0118 (19)	0.025 (2)	0.007 (2)
02	0.056 (2)	0.051 (3)	0.046 (3)	0.005 (2)	0.018 (2)	0.007 (2)
O3	0.041 (2)	0.054 (3)	0.057 (3)	-0.0004 (19)	0.005 (2)	-0.006 (3)
O4	0.035 (2)	0.045 (3)	0.058 (3)	0.0046 (18)	0.0031 (19)	-0.015 (2)
C1	0.064 (4)	0.048 (4)	0.041 (4)	0.008 (3)	0.016 (3)	-0.003 (3)
C2	0.043 (3)	0.055 (4)	0.035 (4)	-0.004 (3)	0.004 (3)	0.001 (3)
C3	0.042 (3)	0.051 (4)	0.036 (4)	-0.003 (3)	0.006 (3)	-0.003 (3)
C4	0.066 (4)	0.048 (4)	0.044 (4)	-0.009 (3)	0.007 (3)	-0.006 (4)
C5	0.076 (5)	0.061 (5)	0.050 (5)	-0.025 (4)	-0.005 (4)	0.008 (4)
C6	0.069 (5)	0.091 (6)	0.049 (5)	-0.024 (4)	0.016 (4)	0.000 (5)
C7	0.058 (4)	0.083 (6)	0.054 (5)	-0.004 (4)	0.022 (4)	-0.008 (4)
C8	0.050 (4)	0.055 (4)	0.059 (5)	0.007 (3)	0.005 (3)	0.009 (4)
C9	0.058 (4)	0.046 (4)	0.039 (4)	-0.007 (3)	0.009 (3)	-0.005 (3)
C10	0.054 (4)	0.053 (4)	0.034 (4)	-0.004 (3)	0.010 (3)	-0.005 (3)
C11	0.057 (4)	0.073 (5)	0.051 (4)	-0.002 (3)	0.025 (3)	0.002 (4)
C12	0.062 (4)	0.094 (6)	0.060 (5)	-0.025 (4)	0.028 (4)	-0.002 (5)
C13	0.095 (6)	0.064 (5)	0.055 (5)	-0.025 (4)	0.028 (5)	-0.009 (4)
C14	0.078 (5)	0.049 (4)	0.055 (5)	0.004 (3)	0.019 (4)	-0.002 (4)
C15	0.058 (4)	0.053 (4)	0.069 (5)	0.016 (3)	0.030 (4)	0.005 (4)
C16	0.049 (3)	0.048 (4)	0.065 (5)	0.018 (3)	0.023 (3)	0.014 (4)
C17	0.050 (4)	0.044 (4)	0.069 (5)	-0.013 (3)	0.022 (3)	-0.017 (4)
C18	0.040 (3)	0.051 (4)	0.053 (4)	-0.012 (3)	0.015 (3)	-0.008 (4)
C19	0.038 (3)	0.072 (5)	0.046 (4)	-0.016 (3)	0.016 (3)	0.001 (4)
C20	0.049 (4)	0.073 (5)	0.063 (5)	-0.008 (4)	0.014 (4)	0.006 (4)
C21	0.053 (4)	0.126 (8)	0.050 (5)	-0.021 (5)	-0.004 (4)	0.014 (6)
C22	0.078 (5)	0.094 (7)	0.065 (6)	-0.019 (5)	0.008 (5)	-0.026 (5)
C23	0.069 (5)	0.075 (5)	0.075 (6)	-0.020 (4)	0.025 (4)	-0.017 (5)
C24	0.030 (3)	0.051 (4)	0.056 (4)	0.001 (3)	0.014 (3)	-0.004 (3)
C25	0.040 (3)	0.039 (4)	0.049 (4)	-0.008 (3)	0.013 (3)	0.006 (3)
C26	0.041 (3)	0.039 (4)	0.041 (4)	-0.006 (3)	0.011 (3)	0.001 (3)
C27	0.059 (4)	0.049 (4)	0.058 (5)	0.000 (3)	0.015 (4)	0.005 (4)
C28	0.068 (5)	0.075 (5)	0.054 (5)	-0.008 (4)	0.005 (4)	-0.015 (4)
C29	0.064 (5)	0.074 (5)	0.048 (5)	-0.010 (4)	-0.003 (4)	0.002 (4)

C30	0 046 (4)	0.063 (5)	0.057 (5)	0.000(3)	0.001 (3)	0 011 (4)
C31	0.054 (4)	0.041 (4)	0.070 (5)	0.007 (3)	0.016 (3)	-0.015(4)
C32	0.040 (3)	0.053 (4)	0.072 (5)	0.014 (3)	0.019 (3)	-0.009(4)
Cl1	0.0901 (15)	0.132 (2)	0.109(2)	-0.0049(14)	0.0177 (14)	0.0137 (18)
Cl2	0.1048 (16)	0.0996 (18)	0.113 (2)	-0.0105 (13)	0.0196 (15)	-0.0147 (16)
Cl3	0.133 (2)	0.0693 (16)	0.218 (4)	0.0123 (14)	0.049 (2)	0.036 (2)
C33	0.078 (5)	0.062 (5)	0.075 (6)	0.007 (4)	0.035 (4)	0.018 (5)
Geometric param	neters (Å, °)					
Ce1—O1		2.193 (4)	C12—C	13	1.357	(9)
Ce1—O2		2.218 (4)	С12—Н	112	0.9300)
Ce1—O3		2.239 (4)	C13—C	14	1.362	(9)
Ce1—O4		2.188 (4)	С13—Н	13	0.9300)
Ce1—N1		2.603 (4)	С14—Н	[14	0.9300)
Ce1—N2		2.628 (4)	C15—C	16	1.501	(8)
Ce1—N4		2.621 (4)	С15—Н	[15A	0.9700)
Ce1—N3		2.626 (5)	С15—Н	15B	0.9700)
N1—C15		1.467 (7)	С16—Н	16A	0.9700)
N1—C1		1.478 (7)	С16—Н	16B	0.9700)
N1—H1		0.9100	С17—С	18	1.492	(8)
N2—C16		1.471 (6)	С17—Н	117A	0.9700)
N2—C8		1.481 (7)	С17—Н	117B	0.9700)
N2—H2		0.9100	C18—C	23	1.385	(9)
N3—C31		1.484 (7)	C18—C	19	1.402	(8)
N3—C17		1.491 (6)	C19—C	20	1.391	(9)
N3—H3		0.9100	С20—С	21	1.369	(9)
N4—C32		1.460 (7)	С20—Н	20	0.9300)
N4—C24		1.473 (6)	C21—C	22	1.37 (1)
N4—H4		0.9100	С21—Н	21	0.9300)
O1—C3		1.347 (6)	С22—С	23	1.38 (1)
O2—C10		1.350 (7)	С22—Н	122	0.9300)
O3—C19		1.343 (7)	С23—Н	23	0.9300)
O4—C26		1.330 (6)	C24—C	25	1.491	(8)
C1—C2		1.497 (8)	С24—Н	24A	0.9700)
C1—H1A		0.9700	С24—Н	24B	0.9700)
C1—H1B		0.9700	С25—С	30	1.387	(8)
C2—C3		1.407 (8)	С25—С	26	1.396	(7)
C2—C7		1.410 (8)	C26—C	27	1.394	(8)
C3—C4		1.372 (8)	С27—С	28	1.383	(8)
C4—C5		1.380 (9)	С27—Н	27	0.9300)
C4—H4A		0.9300	C28—C	29	1.348	(9)
C5—C6		1.38 (1)	С28—Н	28	0.9300)
С5—Н5		0.9300	С29—С	30	1.391	(9)
C6—C7		1.372 (9)	С29—Н	29	0.9300)
С6—Н6		0.9300	С30—Н	130	0.9300)
С7—Н7		0.9300	C31—C	32	1.519	(8)
С8—С9		1.510 (8)	С31—Н	[31A	0.9700)
C8—H8A		0.9700	С31—Н	31B	0.9700)

C8—H8B	0.9700	C32—H32A	0.9700
C9—C14	1.391 (8)	C32—H32B	0.9700
C9—C10	1.402 (8)	Cl1—C33	1.745 (7)
C10—C11	1.389 (8)	Cl2—C33	1.733 (8)
C11—C12	1.390 (9)	Cl3—C33	1.715 (7)
С11—Н11	0.9300	С33—Н33	0.9800
O4—Ce1—O1	95.7 (2)	C11—C10—C9	118.3 (6)
O4—Ce1—O2	90.7 (2)	C10-C11-C12	120.1 (7)
O1—Ce1—O2	149.1 (1)	C10-C11-H11	119.9
O4—Ce1—O3	147.2 (1)	C12—C11—H11	119.9
O1—Ce1—O3	95.1 (2)	C13—C12—C11	121.5 (7)
O2—Ce1—O3	95.7 (2)	C13—C12—H12	119.3
O4—Ce1—N1	80.7 (1)	C11—C12—H12	119.3
O1—Ce1—N1	71.7 (1)	C12-C13-C14	119.0 (7)
O2—Ce1—N1	139.2 (2)	C12-C13-H13	120.5
O3—Ce1—N1	73.6 (2)	C14—C13—H13	120.5
O4—Ce1—N4	72.5 (2)	C13—C14—C9	121.7 (7)
O1—Ce1—N4	72.9 (1)	C13—C14—H14	119.1
O2—Ce1—N4	80.4 (1)	C9—C14—H14	119.1
O3—Ce1—N4	140.3 (2)	N1-C15-C16	110.4 (5)
N1—Ce1—N4	132.6 (2)	N1—C15—H15A	109.6
O4—Ce1—N3	138.8 (1)	C16-C15-H15A	109.6
O1—Ce1—N3	79.7 (2)	N1—C15—H15B	109.6
O2—Ce1—N3	75.8 (2)	C16-C15-H15B	109.6
O3—Ce1—N3	73.7 (1)	H15A—C15—H15B	108.1
N1—Ce1—N3	133.7 (1)	N2—C16—C15	108.5 (5)
N4—Ce1—N3	67.1 (1)	N2—C16—H16A	110.0
O4—Ce1—N2	72.7 (1)	C15—C16—H16A	110.0
O1—Ce1—N2	137.8 (1)	N2—C16—H16B	110.0
O2—Ce1—N2	72.8 (1)	C15—C16—H16B	110.0
O3—Ce1—N2	78.5 (2)	H16A—C16—H16B	108.4
N1—Ce1—N2	66.5 (1)	N3—C17—C18	111.7 (5)
N4—Ce1—N2	135.3 (1)	N3—C17—H17A	109.3
N3—Ce1—N2	135.2 (2)	C18—C17—H17A	109.3
C15—N1—C1	110.5 (5)	N3—C17—H17B	109.3
C15—N1—Ce1	113.5 (3)	С18—С17—Н17В	109.3
C1-N1-Ce1	114.5 (3)	H17A—C17—H17B	107.9
C15—N1—H1	105.8	C23—C18—C19	119.3 (7)
C1—N1—H1	105.8	C23—C18—C17	121.7 (6)
Ce1—N1—H1	105.8	C19—C18—C17	119.0 (6)
C16—N2—C8	112.0 (4)	O3—C19—C20	120.6 (7)
C16—N2—Ce1	110.9 (3)	O3—C19—C18	121.3 (6)
C8—N2—Ce1	114.4 (3)	C20—C19—C18	118.1 (7)
C16—N2—H2	106.3	C21—C20—C19	120.8 (7)
C8—N2—H2	106.3	C21—C20—H20	119.6
Ce1—N2—H2	106.3	С19—С20—Н20	119.6
C31—N3—C17	111.2 (5)	C22—C21—C20	122.0 (8)
C31—N3—Ce1	110.5 (3)	C22—C21—H21	119.0
C17—N3—Ce1	113.6 (3)	C20—C21—H21	119.0

C31—N3—H3	107.1	C21—C22—C23	117.7 (8)
C17—N3—H3	107.1	C21—C22—H22	121.2
Ce1—N3—H3	107.1	С23—С22—Н22	121.2
C32—N4—C24	111.9 (4)	C22—C23—C18	122.1 (7)
C32—N4—Ce1	112.8 (3)	С22—С23—Н23	118.9
C24—N4—Ce1	114.9 (3)	C18—C23—H23	118.9
C32—N4—H4	105.4	N4—C24—C25	115.1 (4)
C24—N4—H4	105.4	N4—C24—H24A	108.5
Ce1—N4—H4	105.4	C25—C24—H24A	108.5
C3—O1—Ce1	143.7 (4)	N4—C24—H24B	108.5
C10-O2-Ce1	137.1 (4)	C25—C24—H24B	108.5
C19—O3—Ce1	135.0 (3)	H24A—C24—H24B	107.5
C26—O4—Ce1	143.9 (3)	C30—C25—C26	119.2 (6)
N1—C1—C2	111.5 (5)	C30—C25—C24	120.9 (5)
N1—C1—H1A	109.3	C26—C25—C24	119.7 (5)
C2—C1—H1A	109.3	O4—C26—C27	120.0 (5)
N1—C1—H1B	109.3	O4—C26—C25	121.5 (5)
C2—C1—H1B	109.3	C27—C26—C25	118.5 (5)
H1A—C1—H1B	108.0	C28—C27—C26	121.0 (6)
C3—C2—C7	118.2 (6)	С28—С27—Н27	119.5
C3—C2—C1	120.9 (5)	С26—С27—Н27	119.5
C7—C2—C1	120.9 (6)	C29—C28—C27	120.7 (7)
O1—C3—C4	121.5 (6)	C29—C28—H28	119.6
O1—C3—C2	118.6 (5)	С27—С28—Н28	119.6
C4—C3—C2	119.8 (6)	C28—C29—C30	119.3 (6)
C3—C4—C5	119.6 (7)	С28—С29—Н29	120.3
C3—C4—H4A	120.2	С30—С29—Н29	120.3
C5—C4—H4A	120.2	C25—C30—C29	121.3 (6)
C6—C5—C4	122.9 (7)	С25—С30—Н30	119.3
С6—С5—Н5	118.6	С29—С30—Н30	119.3
C4—C5—H5	118.6	N3—C31—C32	108.6 (5)
C7—C6—C5	117.4 (7)	N3—C31—H31A	110.0
С7—С6—Н6	121.3	С32—С31—Н31А	110.0
С5—С6—Н6	121.3	N3—C31—H31B	110.0
C6—C7—C2	122.1 (6)	C32—C31—H31B	110.0
С6—С7—Н7	118.9	H31A—C31—H31B	108.3
С2—С7—Н7	118.9	N4—C32—C31	110.6 (4)
N2—C8—C9	111.3 (5)	N4—C32—H32A	109.5
N2—C8—H8A	109.4	C31—C32—H32A	109.5
С9—С8—Н8А	109.4	N4—C32—H32B	109.5
N2—C8—H8B	109.4	C31—C32—H32B	109.5
С9—С8—Н8В	109.4	H32A—C32—H32B	108.1
H8A—C8—H8B	108.0	Cl3—C33—Cl2	110.8 (4)
C14—C9—C10	119.4 (6)	Cl3—C33—Cl1	109.4 (4)
C14—C9—C8	121.7 (6)	CI2—C33—CI1	110.4 (4)
C10—C9—C8	118.9 (6)	CI3—C33—H33	108.7
02-C10-C11	121.6 (6)	CI2—C33—H33	108.7
O2—C10—C9	120.2 (5)	С11—С33—Н33	108.7
O4—Ce1—N1—C15	-64.5 (4)	N4—Ce1—O4—C26	16.1 (6)

O1—Ce1—N1—C15	-163.7 (4)	N3—Ce1—O4—C26	27.0 (7)
O2-Ce1-N1-C15	15.6 (5)	N2-Ce1-O4-C26	167.6 (6)
O3—Ce1—N1—C15	95.0 (4)	C15—N1—C1—C2	-159.3 (5)
N4—Ce1—N1—C15	-120.1 (4)	Ce1—N1—C1—C2	71.0 (5)
N3—Ce1—N1—C15	141.5 (4)	N1—C1—C2—C3	-54.8 (7)
N2—Ce1—N1—C15	10.7 (4)	N1—C1—C2—C7	126.2 (6)
O4—Ce1—N1—C1	63.7 (4)	Ce1—O1—C3—C4	-141.8 (5)
O1—Ce1—N1—C1	-35.5 (4)	Ce1—O1—C3—C2	38.4 (9)
O2-Ce1-N1-C1	143.8 (4)	C7—C2—C3—O1	-179.6 (5)
O3—Ce1—N1—C1	-136.8 (4)	C1—C2—C3—O1	1.4 (8)
N4—Ce1—N1—C1	8.1 (5)	C7—C2—C3—C4	0.6 (8)
N3—Ce1—N1—C1	-90.3 (4)	C1—C2—C3—C4	-178.4 (5)
N2—Ce1—N1—C1	138.9 (4)	O1—C3—C4—C5	-179.6 (5)
O4-Ce1-N2-C16	108.5 (4)	C2—C3—C4—C5	0.2 (9)
O1-Ce1-N2-C16	29.4 (5)	C3—C4—C5—C6	-1(1)
O2-Ce1-N2-C16	-155.2 (4)	C4—C5—C6—C7	1(1)
O3-Ce1-N2-C16	-55.5 (4)	C5—C6—C7—C2	0(1)
N1—Ce1—N2—C16	21.4 (4)	C3—C2—C7—C6	-0.6 (9)
N4—Ce1—N2—C16	148.9 (4)	C1—C2—C7—C6	178.5 (6)
N3—Ce1—N2—C16	-107.8 (4)	C16—N2—C8—C9	-163.6 (5)
O4—Ce1—N2—C8	-123.6 (4)	Ce1—N2—C8—C9	69.0 (6)
O1—Ce1—N2—C8	157.3 (3)	N2-C8-C9-C14	122.0 (6)
O2—Ce1—N2—C8	-27.3 (3)	N2-C8-C9-C10	-59.9 (7)
O3—Ce1—N2—C8	72.4 (4)	Ce1-02-C10-C11	-129.1 (5)
N1—Ce1—N2—C8	149.3 (4)	Ce1—O2—C10—C9	51.5 (8)
N4—Ce1—N2—C8	-83.2 (4)	C14—C9—C10—O2	178.8 (5)
N3—Ce1—N2—C8	20.1 (4)	C8—C9—C10—O2	0.7 (9)
O4—Ce1—N3—C31	-32.3 (5)	C14—C9—C10—C11	-0.6 (9)
O1-Ce1-N3-C31	54.6 (4)	C8—C9—C10—C11	-178.7 (6)
O2-Ce1-N3-C31	-106.5 (4)	O2-C10-C11-C12	-179.4 (6)
O3-Ce1-N3-C31	153.1 (4)	C9-C10-C11-C12	0.0 (9)
N1-Ce1-N3-C31	106.6 (4)	C10-C11-C12-C13	0(1)
N4—Ce1—N3—C31	-21.1 (3)	C11-C12-C13-C14	0(1)
N2-Ce1-N3-C31	-153.1 (3)	C12—C13—C14—C9	0(1)
O4—Ce1—N3—C17	-158.1 (4)	C10-C9-C14-C13	1(1)
O1—Ce1—N3—C17	-71.2 (4)	C8—C9—C14—C13	179.0 (6)
O2—Ce1—N3—C17	127.7 (4)	C1-N1-C15-C16	-171.8 (5)
O3—Ce1—N3—C17	27.3 (4)	Ce1-N1-C15-C16	-41.6 (6)
N1—Ce1—N3—C17	-19.2 (5)	C8—N2—C16—C15	179.8 (5)
N4—Ce1—N3—C17	-146.9 (4)	Ce1—N2—C16—C15	-50.9 (6)
N2—Ce1—N3—C17	81.1 (4)	N1-C15-C16-N2	62.5 (6)
O4—Ce1—N4—C32	161.1 (4)	C31—N3—C17—C18	165.2 (5)
O1—Ce1—N4—C32	-97.0 (4)	Ce1—N3—C17—C18	-69.4 (6)
O2—Ce1—N4—C32	67.3 (4)	N3—C17—C18—C23	-121.0 (6)
O3—Ce1—N4—C32	-20.0 (5)	N3—C17—C18—C19	60.0 (7)
N1—Ce1—N4—C32	-140.3 (4)	Ce1—O3—C19—C20	131.1 (5)
N3—Ce1—N4—C32	-11.2 (4)	Ce1-03-C19-C18	-51.5 (8)
N2—Ce1—N4—C32	120.7 (4)	C23—C18—C19—O3	-178.2 (5)
O4—Ce1—N4—C24	31.2 (4)	C17—C18—C19—O3	0.8 (8)

O1—Ce1—N4—C24	133.1 (4)	C23-C18-C19-C20	-0.7 (9)
O2-Ce1-N4-C24	-62.6 (4)	C17—C18—C19—C20	178.3 (5)
O3-Ce1-N4-C24	-149.9 (4)	O3—C19—C20—C21	177.7 (6)
N1—Ce1—N4—C24	89.8 (4)	C18-C19-C20-C21	0.2 (9)
N3-Ce1-N4-C24	-141.1 (4)	C19—C20—C21—C22	0(1)
N2-Ce1-N4-C24	-9.2 (5)	C20—C21—C22—C23	0(1)
O4—Ce1—O1—C3	-96.5 (6)	C21—C22—C23—C18	0(1)
O2-Ce1-O1-C3	162.6 (5)	C19—C18—C23—C22	1(1)
O3-Ce1-O1-C3	52.5 (6)	C17—C18—C23—C22	-178.0 (6)
N1—Ce1—O1—C3	-18.3 (6)	C32—N4—C24—C25	163.9 (5)
N4—Ce1—O1—C3	-166.2 (7)	Ce1—N4—C24—C25	-65.7 (6)
N3—Ce1—O1—C3	124.8 (6)	N4-C24-C25-C30	-131.3 (5)
N2—Ce1—O1—C3	-26.1 (7)	N4-C24-C25-C26	53.5 (7)
O4—Ce1—O2—C10	39.8 (5)	Ce1—O4—C26—C27	148.5 (5)
O1-Ce1-O2-C10	142.1 (5)	Ce1-04-C26-C25	-32.8 (9)
O3-Ce1-O2-C10	-107.9 (5)	C30—C25—C26—O4	-179.3 (5)
N1-Ce1-O2-C10	-36.6 (6)	C24—C25—C26—O4	-4.0 (8)
N4-Ce1-O2-C10	111.9 (5)	C30—C25—C26—C27	-0.5 (8)
N3—Ce1—O2—C10	-179.5 (5)	C24—C25—C26—C27	174.7 (5)
N2-Ce1-O2-C10	-31.8 (5)	O4—C26—C27—C28	178.4 (6)
O4-Ce1-O3-C19	-142.9 (5)	C25—C26—C27—C28	-0.3 (9)
O1-Ce1-O3-C19	108.3 (6)	C26—C27—C28—C29	0(1)
O2-Ce1-O3-C19	-42.8 (6)	C27—C28—C29—C30	0(1)
N1-Ce1-O3-C19	177.5 (6)	C26—C25—C30—C29	1.3 (9)
N4—Ce1—O3—C19	39.0 (7)	C24—C25—C30—C29	-173.9 (6)
N3—Ce1—O3—C19	30.6 (6)	C28—C29—C30—C25	-1(1)
N2-Ce1-O3-C19	-113.9 (6)	C17—N3—C31—C32	177.8 (5)
O1-Ce1-O4-C26	-53.9 (6)	Ce1—N3—C31—C32	50.6 (6)
O2—Ce1—O4—C26	95.9 (6)	C24—N4—C32—C31	173.5 (5)
O3—Ce1—O4—C26	-162.6 (5)	Ce1—N4—C32—C31	42.1 (6)
N1—Ce1—O4—C26	-124.3 (6)	N3-C31-C32-N4	-63.2 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1···Cl1	0.91	2.73	3.604 (5)	162
С33—Н33…О3	0.98	2.51	3.437 (7)	157
N2—H2···Cl2 ⁱ	0.91	2.94	3.762 (5)	151
C4—H4A···Cl3 ⁱⁱ	0.93	2.79	3.646 (7)	153
C29—H29····Cg1 ⁱⁱⁱ	0.93	2.85	3.626 (7)	142
C31—H31B····Cg2 ^{iv}	0.97	2.79	3.712 (6)	158
		1/2 () 2/2 1/2	2/2 (1) 1/2	1 /2 1 /2

Symmetry codes: (i) -x+3/2, y-1/2, -z+1/2; (ii) -x+3/2, y+1/2, -z+1/2; (iii) x-3/2, -y-1/2, z-3/2; (iv) -x+1/2, y+1/2, -z+1/2.

Fig. 1